
PHYS-434 physics ofphotonic semicondrator devices

Series 6 - Basic notions on the physics ofsemiconductor microcavities
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We wish to determine the phase shifts associatedwith the optical path difference

between the firstreflectedbeam andthe second one:

A =ncar (Ar+ BC) - HairED
EB:BC:Le, ED=Esing,
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=>S =A (when neglecting dephasing occurring atthe reflection)
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2) The transmittedfield is relatedto the incoming one through:
Ent = Eieint.,.el8o.ta 180 =ncavB)
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In absence of any optical losses:
R+T =1

4) condition ofcavity modes:8 =22p.p-integer cavity mode wavelength
X (associated

=>(2ncarLcarcosOi)=p => aNcarLarCOSR=PX with El

&phase atthe reflection (depends on energy E): 4(E)
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The linewidth (FWHM) of the modes UC is obtainedby determining 8':
A

T18') = max*with 8'=8+5.8 =22P(p- integer).8.
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Ahere, everything is calculatedwith Tminwo, as shown in the fig. on left,

which is generally the case for Fabry Perot cavities in reality (R-1)
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Based on 4) 8 =2 12UcarLarcOsO:) =22P, COSO=1
Xcav

1 lcar is large enough thatCE) is neglected) (normal incidence

=>1681=4IUcarlar oxcar =
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where Q = is the quality factor ofthe Fabry- Perot cavity,
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also known as the resolving power.
At the limit of resolution, we fulfill the equality:22 =151

By definition, Uc =0W =0 (22) =2xcAcarNear
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6) Adjacentmodes being separated by 2i =>F =t
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7) · F =Fx +R2and the cavity photon energy is such that:

E +EE* =(EEncar
· under normal incidence:0=0= =0, which implies that:

Bz =ar
· andthe dispersion of optical modes is then given by:
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9) If one considers the penetration length LDBR and IDBR = XcavX:
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Peff ... effective orderof the carity

=>Un=near(Lca+2LpBR ke

10) a) SiO2/SizN4

The SiOa/SisNycouple is made of amorphous materials characterizedbya
wide bandgap (insulating materials). They are therefore well adapted to

cover a wide spectral range (from the IR down to the UV(x-300nms).

In addition,costs associated with their deposition are low compared
with crystalline semiconductor epitaxy techniques (use oflow temperature

(T<300°



plasma enhanced chemical vapor deposition1

However, such a system cannot be usedas a bottom PBR ifwewishto

realize a crystalline semiconductor microcarity (MC) unlesswater bonding
techniques are employed to couple such a DBR to the cavity butitwill

involve lengthy processing steps to remove the DBR substrate.
I needfor clean room facilities)

b) AlAs/GaAs

The AIAs/GaAs couple is a nearly strain-free system as the two materials

possess relatively similar lattice parameters so thatcrack-free BBRs with
a high number of pairs and a peak reflectivity - 100% can be obtained

(while having a reduced dislocation density).
In addition, it is possible to oxidize the AIAs layers and therefore to have

an oxide. Alox, which exhibits an optical refractive indexmuch smaller than
-
nee

AlAs.As a result, AlAs/GaAs DBRs are characterized by a large stopband
and can reach high reflectivities with a reduced number of pairs.

such a couple is used tofabricate GaAs-basedVCSELs emitting in the

near IR. Due to the bandgap ofGaAs, it is not adapted for 12850nm.

2) AIN/GaN

The AIN/GAN couple exhibits a fairly large refractive index contrast so that

a priori a few number of pairs is required togethigh reflectivity DBRs.

However, contrary to its As-counterpart, the present couple is characterized

by a significantlattice parameter mismatch which can lead to cracked

structures and a high density ofdislocations.



Usually the AlGaN/GaN system is preferred butit requires a much larger
number of pairs due to the reduced optical refractive index contrast.

Alternatively, the AlIuN/GaN system which is perfectly lattice matched

for an indium contentXInw18% can also be used,butthe AllnN

alloy is difficult to grow.


